from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Load the iris dataset
iris = load_iris()
X = iris.data
y = iris.target
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a decision tree classifier
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# Make predictions on the test set
y_pred = clf.predict(X_test)